"/>

国产成人午夜高潮毛片|国产午夜精品一区二区在线观看|久久zyz资源站无码中文动漫|在线观看国产成人av天堂|成人精品一区日本无码网

Scientists find two genes in lung cell used by flu to infect hosts

Source: Xinhua    2018-04-11 00:17:37

WASHINGTON, April 10 (Xinhua) -- American researchers have developed a genetic screening tool that identified two key factors that allow the influenza virus to infect human lung cells.

The study, published on Tuesday in the journal Cell Reports, revealed a technique that can create a library of modified cells, each missing a different gene, allowing scientists to see which changes impact their response to flu. This in turn could identify potential targets for antiviral drugs.

"Our current treatments for flu are limited. Vaccines have variable efficacy, and the virus has a propensity to mutate so that antiviral drugs don't work as well," said Julianna Han, a graduate student in microbiology at the University of Chicago and lead author of the study.

"The next wave of antiviral treatments will be in part directed toward the host, so our work helps us get a better understanding of what proteins and pathways are utilized by the influenza virus."

Han and Balaji Manicassamy, assistant professor of microbiology and the senior author of the study, used CRISPR/Cas9 gene editing tools that allow scientists to selectively knock out, or turn off, specific genes.

They created a library of modified human epithelial lung cells, the cells that line the airways and are the first to be infected by the flu virus. Each cell was missing a different gene, creating nearly 19,000 different genetic variations of the cell.

The researchers then exposed the cells to the H5N1 flu strain, a type of influenza A virus commonly known as the bird flu.

They supposed that if the virus was able to infect and kill one of the host cells, that means the gene and the proteins it produces didn't play a role in the virus' ability to replicate.

If the cell survived, that means its modified genome somehow made it resistant to the virus, it was now missing a pathway that the virus relied on to replicate and do its dirty work.

After five rounds of exposing the cells to the H5N1 virus, the researchers were left with a set of cells that were pretty resistant to the flu. When they examined what these hardy survivors had in common, two genes stood out.

One, SLC35A1, encodes a protein that helps create a receptor for the flu on the surface of the cell.

The second gene, CIC, is a negative regulator of the innate immune system, meaning it helps shut down the cell's default immune response to foreign invaders.

When CIC is turned off, other genes that produce antiviral and inflammatory responses are allowed to fire up and fight off the virus, which is why the test cells missing it were resistant to the flu.

But researchers said one couldn't just knock out a gene like CIC permanently as a means to fight the flu. The body needs mechanisms to shut off the immune system once an infection is gone. If not, it could go into overdrive and damage the body's own cells, which is what happens in autoimmune disorders.

On the other hand, certain cancers can exploit a negative regulator like CIC to suppress immune responses while tumor cells run rampant.

Once identifying the two key genes involved in H5N1 response, they exposed the cells to other pathogens to spot any more commonalities.

CIC was also important for all strains of flu and several RNA viruses, or viruses containing RNA genomes. These included respiratory and non-respiratory viruses, highlighting CICs broad effect.

Editor: yan
Related News
Xinhuanet

Scientists find two genes in lung cell used by flu to infect hosts

Source: Xinhua 2018-04-11 00:17:37

WASHINGTON, April 10 (Xinhua) -- American researchers have developed a genetic screening tool that identified two key factors that allow the influenza virus to infect human lung cells.

The study, published on Tuesday in the journal Cell Reports, revealed a technique that can create a library of modified cells, each missing a different gene, allowing scientists to see which changes impact their response to flu. This in turn could identify potential targets for antiviral drugs.

"Our current treatments for flu are limited. Vaccines have variable efficacy, and the virus has a propensity to mutate so that antiviral drugs don't work as well," said Julianna Han, a graduate student in microbiology at the University of Chicago and lead author of the study.

"The next wave of antiviral treatments will be in part directed toward the host, so our work helps us get a better understanding of what proteins and pathways are utilized by the influenza virus."

Han and Balaji Manicassamy, assistant professor of microbiology and the senior author of the study, used CRISPR/Cas9 gene editing tools that allow scientists to selectively knock out, or turn off, specific genes.

They created a library of modified human epithelial lung cells, the cells that line the airways and are the first to be infected by the flu virus. Each cell was missing a different gene, creating nearly 19,000 different genetic variations of the cell.

The researchers then exposed the cells to the H5N1 flu strain, a type of influenza A virus commonly known as the bird flu.

They supposed that if the virus was able to infect and kill one of the host cells, that means the gene and the proteins it produces didn't play a role in the virus' ability to replicate.

If the cell survived, that means its modified genome somehow made it resistant to the virus, it was now missing a pathway that the virus relied on to replicate and do its dirty work.

After five rounds of exposing the cells to the H5N1 virus, the researchers were left with a set of cells that were pretty resistant to the flu. When they examined what these hardy survivors had in common, two genes stood out.

One, SLC35A1, encodes a protein that helps create a receptor for the flu on the surface of the cell.

The second gene, CIC, is a negative regulator of the innate immune system, meaning it helps shut down the cell's default immune response to foreign invaders.

When CIC is turned off, other genes that produce antiviral and inflammatory responses are allowed to fire up and fight off the virus, which is why the test cells missing it were resistant to the flu.

But researchers said one couldn't just knock out a gene like CIC permanently as a means to fight the flu. The body needs mechanisms to shut off the immune system once an infection is gone. If not, it could go into overdrive and damage the body's own cells, which is what happens in autoimmune disorders.

On the other hand, certain cancers can exploit a negative regulator like CIC to suppress immune responses while tumor cells run rampant.

Once identifying the two key genes involved in H5N1 response, they exposed the cells to other pathogens to spot any more commonalities.

CIC was also important for all strains of flu and several RNA viruses, or viruses containing RNA genomes. These included respiratory and non-respiratory viruses, highlighting CICs broad effect.

[Editor: huaxia]
010020070750000000000000011105521371011651
主站蜘蛛池模板: 亚洲综合天堂婷婷五月| 99riav熟女一区二区| 国产又色又爽又黄的免费软件| 久久一区二区三区99| 色欲αv一区二区三区天美传媒| 一本色道久久综合无码人妻| 亚洲一区二区不卡精品| 精品久久久久久久一区二区蜜桃| 极品少妇的粉嫩小泬视频| 福利所第一导航福利| 国内精品久久久久影院日本| 欧美午夜精品久久久久免费视| 把女邻居弄到潮喷的性经历| 欧美一区二区不卡免费| 精品无人区乱码1区2区3区在线 | 亚洲中文字幕无码中字| 亚洲色偷精品一区二区三区| 国产亚洲精品第一综合麻豆| 久久www成人_看片免费不卡 | 亚洲综合国产成人丁香五月激情 | 色狠狠一区二区三区熟女有限公司 | 一区二区三区在线看精品| 久久亚洲欧美日本精品| 欧美巨大黑人精品一.二.三| 四库影院永久国产精品地址 | 人妻系列无码一区二区三区| 色妞色综合久久夜夜| 18禁免费吃奶摸下激烈视频| 亚洲中文有码字幕日本第一页| 伊人久久av一区| 欧美顶级少妇作爱| 亚洲国产成人久久综合三区| 欧美日韩免费一区中文| 韩国 日本 亚洲 国产 不卡| 又污又爽又黄的网站| 激情欧美成人小说在线视频 | 美女av在线一区| 欧美熟妇的性裸交| 国产欧美一区二区三区鸳鸯浴| 产精品视频在线观看免费| 亚洲一卡2卡新区国色天香|