"/>

国产成人午夜高潮毛片|国产午夜精品一区二区在线观看|久久zyz资源站无码中文动漫|在线观看国产成人av天堂|成人精品一区日本无码网

Chinese, American scientists develop tiny gel balls to predict cancer

Source: Xinhua    2018-05-15 00:52:35

WASHINGTON, May 14 (Xinhua) -- Chinese and American scientists have developed a new technique that uses tiny elastic balls filled with fluorescent nanoparticles to better understand the mechanical forces between cells, a move that may predict cancer.

In a study published on Monday in the journal of Nature Communication, researchers from Huazhong University of Science and Technology and the University of Illinois at Urbana-Champaign demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens.

This research may unlock some of the mysteries related to embryonic development and cancer stem cells, like tumor-repopulating cells.

According the researchers, scientists previously struggled to quantify the forces called tractions that push, pull and squeeze cells throughout their lifecycles because the tools available to measure force were not small enough to fit into intercellular spaces or sensitive enough to detect the miniscule movements within cell colonies.

Although small on a human scale, the traction plays a fundamental role in cell physiology.

"If we place a single cell in a medium within a petri dish it will not survive for long, even if we provide all of the nutrients needed," said Wang Ning, a mechanical science and engineering professor at the Huazhong university. "The cells fail to form any sort of tissue because there is no support or scaffolding on which to build."

As cells grow and reproduce, they exert forces on each other while competing for space. The team found that if they inject their tiny elastic spheres into early stage embryos of zebrafish and colonies of melanoma cells of mice in petri dishes, the spheres experience the forces.

"The cells do not seem to mind the intrusion," Wang said. "The spheres are made of a nontoxic microgel and even though the cells will push them around, they do not seem to interfere with development."

To measure the amount of force imposed on the cells, the team placed fluorescent nanoparticles inside of the spheres.

When the cells squeeze the spheres, the nanoparticles all move the same amount per area of force. The researchers can then measure the motions of the glowing particles using fluorescent light microscopy to calculate the amount of force exerted on the spheres and cells.

Using this technique, the team has marked the first successful measurement of all three types of force, compression, tension and shear, in all three dimensions, Wang said.

This ability to quantify force in cells may be very important to cancer cell research, Wang said.

The team found that when melanoma tumor cells of mice in vitro begin to reproduce from a single cell to about 100 to 200 cells, compressive stress does not increase.

"We thought that cancer cells would generate more pressure at this early growth stage while the mass of the tumor increases, as we observed in zebrafish embryos, but they do not," Wang said. "We suspect that the cancer cells begin to spread out or metastasize right after this stage."

Primary tumors are usually not deadly, Wang said. The real killer appears to be the spread of tumor-repopulating cells from primary tumors into soft tissues with low intercellular tractions.

"Although the underlying mechanism for metastasis is unclear, we have hypothesized that tumor-repopulating cells spread very rapidly in these secondary soft tissues. Having the ability to measure changes in tractions at the intercellular level may serve as an early cancer-detection tool," Wang said.

This microgel sphere technology may also help unravel the mechanisms behind a metastasis-halting synthetic drug recently described by Wang and his colleagues.

Editor: Mu Xuequan
Related News
Xinhuanet

Chinese, American scientists develop tiny gel balls to predict cancer

Source: Xinhua 2018-05-15 00:52:35

WASHINGTON, May 14 (Xinhua) -- Chinese and American scientists have developed a new technique that uses tiny elastic balls filled with fluorescent nanoparticles to better understand the mechanical forces between cells, a move that may predict cancer.

In a study published on Monday in the journal of Nature Communication, researchers from Huazhong University of Science and Technology and the University of Illinois at Urbana-Champaign demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens.

This research may unlock some of the mysteries related to embryonic development and cancer stem cells, like tumor-repopulating cells.

According the researchers, scientists previously struggled to quantify the forces called tractions that push, pull and squeeze cells throughout their lifecycles because the tools available to measure force were not small enough to fit into intercellular spaces or sensitive enough to detect the miniscule movements within cell colonies.

Although small on a human scale, the traction plays a fundamental role in cell physiology.

"If we place a single cell in a medium within a petri dish it will not survive for long, even if we provide all of the nutrients needed," said Wang Ning, a mechanical science and engineering professor at the Huazhong university. "The cells fail to form any sort of tissue because there is no support or scaffolding on which to build."

As cells grow and reproduce, they exert forces on each other while competing for space. The team found that if they inject their tiny elastic spheres into early stage embryos of zebrafish and colonies of melanoma cells of mice in petri dishes, the spheres experience the forces.

"The cells do not seem to mind the intrusion," Wang said. "The spheres are made of a nontoxic microgel and even though the cells will push them around, they do not seem to interfere with development."

To measure the amount of force imposed on the cells, the team placed fluorescent nanoparticles inside of the spheres.

When the cells squeeze the spheres, the nanoparticles all move the same amount per area of force. The researchers can then measure the motions of the glowing particles using fluorescent light microscopy to calculate the amount of force exerted on the spheres and cells.

Using this technique, the team has marked the first successful measurement of all three types of force, compression, tension and shear, in all three dimensions, Wang said.

This ability to quantify force in cells may be very important to cancer cell research, Wang said.

The team found that when melanoma tumor cells of mice in vitro begin to reproduce from a single cell to about 100 to 200 cells, compressive stress does not increase.

"We thought that cancer cells would generate more pressure at this early growth stage while the mass of the tumor increases, as we observed in zebrafish embryos, but they do not," Wang said. "We suspect that the cancer cells begin to spread out or metastasize right after this stage."

Primary tumors are usually not deadly, Wang said. The real killer appears to be the spread of tumor-repopulating cells from primary tumors into soft tissues with low intercellular tractions.

"Although the underlying mechanism for metastasis is unclear, we have hypothesized that tumor-repopulating cells spread very rapidly in these secondary soft tissues. Having the ability to measure changes in tractions at the intercellular level may serve as an early cancer-detection tool," Wang said.

This microgel sphere technology may also help unravel the mechanisms behind a metastasis-halting synthetic drug recently described by Wang and his colleagues.

[Editor: huaxia]
010020070750000000000000011105091371788141
主站蜘蛛池模板: 精品人妻一区二区三区不卡| 性大毛片视频| 人妻v∧一区二区三区| 亚洲乱码国产乱码精品精姦| 国产欠欠欠18一区二区| 欧美阿v高清资源不卡在线播放| 国产一区二区三区四区五区vm| 亚洲欧美另类在线图片区| 99久久国产综合精品女同| 直接观看黄网站免费视频| 日本韩国的免费观看视频| 亚洲色最新高清av网站| 好男人在线社区www在线观看视频| 亚洲人成网站18禁止人| 婷婷综合久久中文字幕| 国产精品午夜不卡片在线| 成年无码aⅴ片在线观看| 亚洲欧洲国产码专区在线观看| 99re热免费精品视频观看| 中文字幕精品视频在线看免费| 亚洲人成网77777香蕉| 国产成人综合野草| 一本无码字幕在线少妇| 中文字幕人妻丝袜美腿乱一区三区| 亚洲人成网站在小说| 色老头在线一区二区三区| 精品露脸国产偷人在视频| 色偷偷亚洲第一成人综合网址| av一区二区三区在线免费观看| 美女人体艺术写真视频不卡一区二区 | 国产精品午夜无码av体验区| 国产精品一区二区三区四区在线播放| 日韩免费一区二区三区高清| 爆乳熟妇一区二区三区| 中文在线а天堂中文在线新版| 女子spa高潮呻吟抽搐| 日韩av一区二区三区不卡| 成人h精品动漫一区二区三区| 久久精品国产精品亚洲精品| 国产特级毛片aaaaaa高清| 欧美孕妇变态孕交粗暴|