国产成人午夜高潮毛片|国产午夜精品一区二区在线观看|久久zyz资源站无码中文动漫|在线观看国产成人av天堂|成人精品一区日本无码网

 
Scientists suggest a new tactic for starving tumors
                 Source: Xinhua | 2018-06-26 03:31:23 | Editor: huaxia

In this tumor, imaged in a mouse model of breast cancer, oxygen-low areas appear in green. These regions tend to resist standard cancer treatments. (Credit: Laboratory of Metabolic Regulation and Genetics at The Rockefeller University)

WASHINGTON, June 25 (Xinhua) -- American researchers found a potential new tactic against cancer: starving tumors by depriving them of a crucial protein they must utilize.

A study published on Monday in the journal Nature Cell Biology revealed that some ever-dividing tumor cells struggled to make enough aspartate with limited oxygen supply, possibly lending a target for cancer treatment.

Scientists from the Rockefeller University already knew that when certain tumors had outgrown their blood supply, they grew slowly under low-oxygen conditions. The oxygen molecule would participate in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

They mimicked oxygen deprivation in cancer cells harvested from 28 patients, including cancers from blood, stomach, breast, colon and lung, which they cultured in the lab.

Many of these cells exhibited stunted growth under low-oxygen-like conditions. In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material, according to the study.

However, there's other tumors that were less sensitive, and some weren't bothered at all by the treatment.

In comparing these cells' production of chemicals, or metabolites, Javier Garcia-Bermudez, a postdoctoral associate at the university, noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation.

Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment, according to Garcia-Bermudez.

The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate.

There might be several ways to prevent cancer cells from getting aspartate by blocking their methods to make the amino acid or take it up from their surroundings, according to the researchers.

If they are right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas.

Kivanc Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at the university, envisioned a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

That sort of drug combination is still a long ways off, however. Birsoy now planned to investigate possible drugs that would interfere with aspartate production in the lab.

Back to Top Close
Xinhuanet

Scientists suggest a new tactic for starving tumors

Source: Xinhua 2018-06-26 03:31:23

In this tumor, imaged in a mouse model of breast cancer, oxygen-low areas appear in green. These regions tend to resist standard cancer treatments. (Credit: Laboratory of Metabolic Regulation and Genetics at The Rockefeller University)

WASHINGTON, June 25 (Xinhua) -- American researchers found a potential new tactic against cancer: starving tumors by depriving them of a crucial protein they must utilize.

A study published on Monday in the journal Nature Cell Biology revealed that some ever-dividing tumor cells struggled to make enough aspartate with limited oxygen supply, possibly lending a target for cancer treatment.

Scientists from the Rockefeller University already knew that when certain tumors had outgrown their blood supply, they grew slowly under low-oxygen conditions. The oxygen molecule would participate in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

They mimicked oxygen deprivation in cancer cells harvested from 28 patients, including cancers from blood, stomach, breast, colon and lung, which they cultured in the lab.

Many of these cells exhibited stunted growth under low-oxygen-like conditions. In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material, according to the study.

However, there's other tumors that were less sensitive, and some weren't bothered at all by the treatment.

In comparing these cells' production of chemicals, or metabolites, Javier Garcia-Bermudez, a postdoctoral associate at the university, noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation.

Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment, according to Garcia-Bermudez.

The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate.

There might be several ways to prevent cancer cells from getting aspartate by blocking their methods to make the amino acid or take it up from their surroundings, according to the researchers.

If they are right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas.

Kivanc Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at the university, envisioned a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

That sort of drug combination is still a long ways off, however. Birsoy now planned to investigate possible drugs that would interfere with aspartate production in the lab.

010020070750000000000000011105091372803221
主站蜘蛛池模板: 国产精品婷婷久久爽一下| 精品无码日韩国产不卡av| 亚洲欧洲日产国无高清码图片| 国产精品va无码免费| 播放男人添女人下边视频| 国产乱子乱人伦电影在线观看| 国产日韩另类综合11页| 久久久国产影视一区| 国产亚洲精品成人aa片| 亚洲人成电影综合网站色www| 国产精品一区你懂的| 国产福利精品一区二区| 久久精品成人免费国产片小草 | 亚洲暴爽av天天爽日日碰| 亚洲男人综合久久综合天堂| 精品国内自产拍在线播放观看 | 日本在线观看视频一区二区三区| 国产无遮挡又爽又黄的视频| 性感美女av一区二区| 日韩精品人妻2022无码中文字幕 | 亚洲精品国产成人| 亚洲啪啪av无码片| 欧美又大又硬又粗bbbbb| 亚洲欧洲一区二区综合精品| 亚洲.欧美.在线视频| 女人被狂c到高潮视频网站| 欧美又粗又长又爽做受| 国产欧美在线亚洲一区| 国产精品日韩在线一区二区| 一区二区三区视频精品店在线视频精品 | 国产精品天天看特色大片| 性猛交ⅹxxx富婆视频| 最新2020无码中文字幕在线视频 | 久久伊人av综合影院| 97精品久久天干天天天按摩| 国内激情一区二区视频| 国产亚洲精品久久久久久武则天| 99精品一区二区三区无码吞精| 日欧一片内射va在线影院| 中文人妻av一区二区| 天干天干夜天干天天爽|